Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 242(4): 1614-1629, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38594212

RESUMEN

Species-specific differences in nutrient acquisition strategies allow for complementary use of resources among plants in mixtures, which may be further shaped by mycorrhizal associations. However, empirical evidence of this potential role of mycorrhizae is scarce, particularly for tree communities. We investigated the impact of tree species richness and mycorrhizal types, arbuscular mycorrhizal fungi (AM) and ectomycorrhizal fungi (EM), on above- and belowground carbon (C), nitrogen (N), and phosphorus (P) dynamics. Soil and soil microbial biomass elemental dynamics showed weak responses to tree species richness and none to mycorrhizal type. However, foliar elemental concentrations, stoichiometry, and pools were significantly affected by both treatments. Tree species richness increased foliar C and P pools but not N pools. Additive partitioning analyses showed that net biodiversity effects of foliar C, N, P pools in EM tree communities were driven by selection effects, but in mixtures of both mycorrhizal types by complementarity effects. Furthermore, increased tree species richness reduced soil nitrate availability, over 2 yr. Our results indicate that positive effects of tree diversity on aboveground nutrient storage are mediated by complementary mycorrhizal strategies and highlight the importance of using mixtures composed of tree species with different types of mycorrhizae to achieve more multifunctional afforestation.


Asunto(s)
Biodiversidad , Carbono , Micorrizas , Nitrógeno , Fósforo , Hojas de la Planta , Suelo , Árboles , Micorrizas/fisiología , Árboles/microbiología , Hojas de la Planta/microbiología , Hojas de la Planta/metabolismo , Fósforo/metabolismo , Suelo/química , Nitrógeno/metabolismo , Carbono/metabolismo , Biomasa , Microbiología del Suelo , Elementos Químicos , Especificidad de la Especie
2.
Sci Adv ; 9(40): eadi2362, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37801499

RESUMEN

Tree species diversity and mycorrhizal associations play a central role for forest productivity, but factors driving positive biodiversity-productivity relationships remain poorly understood. In a biodiversity experiment manipulating tree diversity and mycorrhizal associations, we examined the roles of above- and belowground processes in modulating wood productivity in young temperate tree communities and potential underlying mechanisms. We found that tree species richness, but not mycorrhizal associations, increased forest productivity by enhancing aboveground structural complexity within communities. Structurally complex communities were almost twice as productive as structurally simple stands, particularly when light interception was high. We further demonstrate that overyielding was largely explained by positive net biodiversity effects on structural complexity with functional variation in shade tolerance and taxonomic diversity being key drivers of structural complexity in mixtures. Consideration of stand structural complexity appears to be a crucial element in predicting carbon sequestration in the early successional stages of mixed-species forests.


Asunto(s)
Bosques , Árboles , Biodiversidad , Madera , Secuestro de Carbono
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...